Hệ tọa độ trong không gian (3 chiều) Hệ_tọa_độ_Descartes

Là 3 trục vuông góc nhau từng đôi một x'Ox, y'Oy, z'Oz mà trên đó đã chọn 3 véc-tơ đơn vị i → {\displaystyle {\vec {i}}} , j → {\displaystyle {\vec {j}}} , k → {\displaystyle {\vec {k}}} sao cho độ dài của 3 véc-tơ này bằng nhau

Trục x'Ox (hay trục Ox) gọi là trục hoành.

Trục y'Oy (hay trục Oy) gọi là trục tung.

Trục z'Oz (hay trục Oz) gọi là trục cao.

Điểm O được gọi là gốc tọa độ

3 trục tọa độ nói trên vuông góc với nhau tạo thành 3 mặt phẳng tọa độ là Oxy, Oyz và Ozx vuộng góc với nhau từng đôi một

Tranh 4 - Hệ tọa độ Descartes ba chiều với trục y có chiều chạy xa người quan sát.Tranh 5 - Hệ tọa độ Descartes ba chiều với trục x có chiều chạy về phía người quan sát.
Tranh 6 - The left-handed orientation is shown on the left, and the right-handed on the right.Tranh 7 - The right-handed Cartesian coordinate system indicating the coordinate planes.

Tọa độ của điểm

Trong không gian, mỗi điểm M được xác định bởi bộ số M(x,y,z). và ngược lại, bộ số đó được gọi là tọa độ của điểm M, x được gọi là hoành độ, y được gọi là tung độ và z được gọi là cao độ của điểm M.

Tọa độ của vector

Trong không gian, cho vectơ a → = x i → + y j → + z k → {\displaystyle {\vec {a}}=x{\vec {i}}+y{\vec {j}}+z{\vec {k}}} , khi đó bộ số (x;y;z) được gọi là tọa độ của vecto a → {\displaystyle {\vec {a}}} .

Ký hiệu: a → = ( x ; y ; z ) {\displaystyle {\vec {a}}=(x;y;z)}

Liên hệ giữa tọa độ vectơ và tọa độ điểm

Cho 2 điểm A ( x A ; y A ; z A ) {\displaystyle A(x_{A};y_{A};z_{A})} và B ( x B ; y B ; z B ) {\displaystyle B(x_{B};y_{B};z_{B})} , khi đó ta có A B → = ( x B − x A ; y B − y A ; z B − z A ) {\displaystyle {\vec {AB}}=(x_{B}-x_{A};y_{B}-y_{A};z_{B}-z_{A})}

Cho điểm M ( x M ; y M ; z M ) {\displaystyle M(x_{M};y_{M};z_{M})} , khi đó ta có O M → = ( x M ; y M ; z M ) {\displaystyle {\vec {OM}}=(x_{M};y_{M};z_{M})}

Độ dài vecto và khoảng cách giữa 2 điểm

Cho a → = ( a 1 ; a 2 ; a 3 ) {\displaystyle {\vec {a}}=(a_{1};a_{2};a_{3})} , khi đó | a → | = a 1 2 + a 2 2 + a 3 2 {\displaystyle \left\vert {\vec {a}}\right\vert ={\sqrt {a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}}} là độ dài của vectơ a → {\displaystyle {\vec {a}}}

Cho 2 điểm A ( x A ; y A ; z A ) {\displaystyle A(x_{A};y_{A};z_{A})} và B ( x B ; y B ; z B ) {\displaystyle B(x_{B};y_{B};z_{B})} , khi đó độ dài đoạn thẳng AB hay khoảng cách giữa A và B là A B = ( x B − x A ) 2 + ( y B − y A ) 2 + ( z B − z A ) 2 {\displaystyle AB={\sqrt {(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}+(z_{B}-z_{A})^{2}}}}

Góc giữa 2 vecto

Cho a → = ( a 1 ; a 2 ; a 3 ) {\displaystyle {\vec {a}}=(a_{1};a_{2};a_{3})} và b → = ( b 1 ; b 2 ; b 3 ) {\displaystyle {\vec {b}}=(b_{1};b_{2};b_{3})} . Gọi α {\displaystyle \alpha } là góc giữa 2 vecto a → {\displaystyle {\vec {a}}} và b → {\displaystyle {\vec {b}}} . Khi đó

cos ⁡ ( α ) = a → . b → | a → | | b → | = a 1 b 1 + a 2 b 2 + a 3 b 3 ( a 1 2 + a 2 2 + a 3 2 ) ( b 1 2 + b 2 2 + b 3 2 ) {\displaystyle \cos(\alpha )={{\vec {a}}.{\vec {b}} \over \left\vert {\vec {a}}\right\vert \left\vert {\vec {b}}\right\vert }={a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3} \over {\sqrt {(a_{1}^{2}+a_{2}^{2}+a_{3}^{2})(b_{1}^{2}+b_{2}^{2}+b_{3}^{2})}}}}

sin ⁡ α = | [ a → ; b → ] | | a → | | b → | {\displaystyle \sin \alpha ={\left\vert [{\vec {a}};{\vec {b}}]\right\vert \over \left\vert {\vec {a}}\right\vert \left\vert {\vec {b}}\right\vert }}

Một số biểu thức tọa độ

Cho a → = ( a 1 ; a 2 ; a 3 ) {\displaystyle {\vec {a}}=(a_{1};a_{2};a_{3})} ta có k a → = ( k a 1 ; k a 2 ; k a 3 ) {\displaystyle k{\vec {a}}=(ka_{1};ka_{2};ka_{3})}

Cho a → = ( a 1 ; a 2 ; a 3 ) {\displaystyle {\vec {a}}=(a_{1};a_{2};a_{3})} và b → = ( b 1 ; b 2 ; b 3 ) {\displaystyle {\vec {b}}=(b_{1};b_{2};b_{3})} ta có

  • a → + b → = ( a 1 + b 1 ; a 2 + b 2 ; a 3 + b 3 ) {\displaystyle {\vec {a}}+{\vec {b}}=(a_{1}+b_{1};a_{2}+b_{2};a_{3}+b_{3})}
  • a → − b → = ( a 1 − b 1 ; a 2 − b 2 ; a 3 − b 3 ) {\displaystyle {\vec {a}}-{\vec {b}}=(a_{1}-b_{1};a_{2}-b_{2};a_{3}-b_{3})}
  • a → . b → = a 1 b 1 + a 2 b 2 + a 3 b 3 {\displaystyle {\vec {a}}.{\vec {b}}=a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}}
  • [ a → , b → ] = ( | a 2 a 3 b 2 b 3 | ; | a 3 a 1 b 3 b 1 | ; | a 1 a 2 b 1 b 2 | ) {\displaystyle [{\vec {a}},{\vec {b}}]=({\begin{vmatrix}a_{2}&a_{3}\\b_{2}&b_{3}\end{vmatrix}};{\begin{vmatrix}a_{3}&a_{1}\\b_{3}&b_{1}\end{vmatrix}};{\begin{vmatrix}a_{1}&a_{2}\\b_{1}&b_{2}\end{vmatrix}})}

Cho đoạn thẳng AB có A ( x A ; y A ; z A ) {\displaystyle A(x_{A};y_{A};z_{A})} và B ( x B ; y B ; z B ) {\displaystyle B(x_{B};y_{B};z_{B})} , Khi đó I ( x A + x B 2 ; y A + y B 2 ; z A + z B 2 ) {\displaystyle I({x_{A}+x_{B} \over 2};{y_{A}+y_{B} \over 2};{z_{A}+z_{B} \over 2})} là tọa độ trung điểm đoạn thẳng AB

Cho △ A B C {\displaystyle \bigtriangleup ABC} có A ( x A ; y A ; z A ) {\displaystyle A(x_{A};y_{A};z_{A})} , B ( x B ; y B ; z B ) {\displaystyle B(x_{B};y_{B};z_{B})} và C ( x C ; y C ; y C ) {\displaystyle C(x_{C};y_{C};y_{C})} , khi đó G ( x A + x B + x C 3 ; y A + y B + y C 3 ; z A + z B + z C 3 ) {\displaystyle G({x_{A}+x_{B}+x_{C} \over 3};{y_{A}+y_{B}+y_{C} \over 3};{z_{A}+z_{B}+z_{C} \over 3})} là tọa độ trọng tâm của △ A B C {\displaystyle \bigtriangleup ABC}